THE GEOMETRIC KEBARAN MICROLITHIC ASSEMBLAGE OF AIN MIRI, NORTHERN ISRAEL

R. SHIMELMITZ, R. BARKAI and A. GOPHER

Abstract: This article discusses an important assemblage of microliths from the Geometric Kebaran site of Ain Miri in the Upper Galilee, Israel. Geometric microliths dominate the assemblage and these comprise trapezes and rectangles, with some parallelograms and a small number of lunates. Strict definitions were used to describe the complete geometric microliths (which avoided the use of the general term trapeze/rectangle) and neutral descriptive terms were used for the broken geometric microliths. Significant metrical differences were observed between the trapezes, asymmetric trapezes-A and the rectangles. It was also noticed that the various types of geometric microliths show a different pattern of change through time thus supporting the decision not to use the general term trapeze/rectangle. While analyzing the Ain Miri microliths, projectile fractures were noticed and studies suggested different hafting patterns for trapezes and rectangles.

Résumé : Cette étude concerne une importante série d’artefacts du Kébarien géométrique du site d’Ain Miri (Haute Galilée, Israël). Les microlithes géométriques constituent l’élément caractéristique de cet assemblage, avec principalement des trapèzes et des rectangles, ainsi que quelques parallélogrammes et un petit nombre de segments. Des définitions détaillées ont été utilisées pour décrire les microlithes entiers (en excluant le terme générique de trapèze/rectangle) tandis que des termes neutres ont été employés pour les fragments de microlithes géométriques. Des différences métriques significatives ont été observées entre les trapèzes stricto sensu, les trapèzes asymétriques-A et les rectangles. Il a aussi été constaté que les divers types de microlithes géométriques présentent des tendances évolutives variées, un aspect qui corrobore la décision de ne pas utiliser le terme de trapèze/rectangle. Au cours de l’analyse de ces microlithes, les fractures d’impact ont été observées et étudiées, suggérant des modes d’emmanchement différents pour les trapèzes et les rectangles.

Key-Words : Geometric Kebaran, Microliths, Epipaleolithic, Northern Israel, Projectile fractures.

Mots Clefs : Kébarien Géométrique, Microlithes, Épipaléolithique, Nord d’Israël, Fractures de projectiles.

The site of Ain Miri is located on the eastern bank of Nahal Dishon in the Upper Galilee, Israel; 560 m above sea level in a valley rich in water sources, surrounded by mountain ridges (fig. 1). In the early 1970s a small test excavation by Taute produced Epi-Paleolithic and Neolithic finds. The excavation at the site was renewed in 1998-2001 by Gopher and Barkai on behalf of Tel-Aviv University, and focused on the Neolithic layers. Epipaleolithic material was excavated too and preliminary findings were published. Additional finds excavated in the 2001 season are presented here. The assemblage is different from previous Geometric Kebaran assemblages found in northern Israel, and it seems to represent a

2. SHIMELMITZ et al., 2001.
possible different facies of the Geometric Kebaran. This paper presents the microliths only, and concentrates mainly on typological aspects. Projectile fractures were noticed in some of the microliths and we argue that projectiles were an integral part of this assemblage.

AREAS OF EXCAVATION

The microliths presented in this paper originated from four different areas at the site:
Area E: This area is in the eastern part of the site, at the edge of a terrace of the near-by channel. Most of the Geometric Kebaran assemblage originates from this area. Four square meters were excavated, in which three layers were identified (fig. 2). The layers are inclined to the east, following the slope at the edge of the terrace. The top layer is a dark gray soil (Unit A), and contains Pre-Pottery Neolithic B (PPNB) finds mixed with Epipaleolithic finds. Below it is a light-gray, whitish soil (Unit B) containing a high density of almost entirely Epipaleolithic lithics. The lowermost layer is dark clay, on bedrock (Unit C), with Epipaleolithic finds only.

Area F: A test pit of 1 m² excavated at the eastern part of the site to a depth of 350 cm below datum. Finds are Neolithic in nature with some microlithic intrusions. During the excavation it became apparent that the frequency of microliths increased with depth.

Area B, general: This is the main area of excavation (ca. 125 m²), including mainly late Pre-Pottery Neolithic finds. The microliths found in this area are intrusive, and most probably originate from the underlying Geometric Kebaran layer.

Clay layer in Area B: In the northwestern part of the main excavation area (Area B), a layer of clay containing Epipale-
olithic finds was uncovered beneath the Neolithic layer. This unit spreads over 21 m², varying in depth from 15 to 30 cm (110/120–135/140 cm below datum).

THE MICROLITHS

The assemblage includes 1734 microliths: 1108 from Area E, 216 from Area F, 182 from Area B (general), and 228 from the clay layer in the northwestern part of Area B (table 1). The microliths were shaped from various types of raw material, of which the most abundant was a highly siliceous flint, brown to gray in color. The state of preservation varies; Area E being the best preserved, as evidenced by the large number of complete microliths in fresh condition.

Table 1: Microliths from Ain Miri (the frequency of projectile fractures is calculated out of the total number of microliths).

<table>
<thead>
<tr>
<th></th>
<th>geometric</th>
<th>non geometric</th>
<th>total</th>
<th>projectile fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area E</td>
<td>695</td>
<td>413</td>
<td>1108</td>
<td>33</td>
</tr>
<tr>
<td>%</td>
<td>62,73</td>
<td>37,27</td>
<td>100</td>
<td>2,98</td>
</tr>
<tr>
<td>Area F</td>
<td>106</td>
<td>110</td>
<td>216</td>
<td>17</td>
</tr>
<tr>
<td>%</td>
<td>49,07</td>
<td>50,93</td>
<td>100</td>
<td>7,87</td>
</tr>
<tr>
<td>Area B, general</td>
<td>89</td>
<td>93</td>
<td>182</td>
<td>9</td>
</tr>
<tr>
<td>%</td>
<td>48,90</td>
<td>51,10</td>
<td>100</td>
<td>4,95</td>
</tr>
<tr>
<td>clay layer (in Area B)</td>
<td>109</td>
<td>119</td>
<td>228</td>
<td>17</td>
</tr>
<tr>
<td>%</td>
<td>47,81</td>
<td>52,19</td>
<td>100</td>
<td>7,46</td>
</tr>
<tr>
<td>total</td>
<td>999</td>
<td>735</td>
<td>1734</td>
<td>76</td>
</tr>
<tr>
<td>%</td>
<td>57,61</td>
<td>42,39</td>
<td>100</td>
<td>4,38</td>
</tr>
</tbody>
</table>

The microliths were divided into geometric and non-geometric categories (tables 2-3) following the list of Bar-Yosef4. The percentage of geometric microliths (out of the total number of microliths) varies between 47,8 % and 62,7 %, Area E showing the highest frequency. The abundance of trapezes and rectangles favors a Geometric Kebaran assignment. Of the 14 lunates found, some may be part of the Geometric Kebaran assemblage (see below), while others may represent a Pre-Pottery Neolithic A (PPNA) occurrence which has not yet been uncovered; it should be noted that single Hagdud truncations were also found.

NON-GEOMETRIC MICROLITHS

The prominent category in the non-geometric group is the “medial fragment” (62,4 -77,5 %). These are medial parts of broken retouched and backed bladelets, mostly abruptly retouched (some of which could have been fragments of geometric microliths). Retouched and backed bladelets (mostly fragments) also appear. The difference from “medial fragment” is that these preserve an unshaped distal or proximal end, and thus are not fragments of geometric microliths (although fragments of proto-geometric types are still a possibility).

Other non-geometric types are: bladelets retouched on both edges (0,9 %-5 %), alternately retouched bladelets (1,2 %-9,2 %), and inversely retouched bladelets (0 % -2,7 %). Most of these microliths are broken, and might actually be fragments of other types, such as points or even geometric microliths.

Points are scarce in the non-geometric assemblage (1,7 %-4,5 %). Only two obliquely truncated backed bladelets were identified, both of which are complete. Some truncated bladelets (0,8 %-7,5 %) appear as well. Of these, 14 have an oblique truncation, three have a straight truncation and three are double-truncated. Except for the double truncations, only one complete truncated specimen was found. Shouldered bladelets appear in small numbers (1,7 %-3,2 %).

The varia group includes microliths that were not ascribed to the former types; five small (less than 1,5 cm in length) non-geometric complete microliths, three notched bladelets, one Helwan retouched bladelet, one La Mouillah point, and 28 unidentified fragments of microliths. Broken-backed and truncated bladelets with a regular retouch on the lateral edge opposite to the shaped back constitute a large part of the varia (n = 18) (fig. 3:1-2). Of these, only one specimen is complete (fig. 3:1). It should be mentioned that the last subtype and the truncated bladelets could be recorded with the geometric microliths (as in some other studies5) but we have decided that only distinctive geometric types will be included within the geometric microliths.

3. The finds published from this area (SHIMELMITZ et al., 2001) were added to the present analysis.
4. BAR-YOSEF, 1970; Some of the Ain Miri geometric microliths are wider than 9 mm. This was noticed in several other Geometric Kebaran assemblages (GORING-MORRIS, 1987: 98-144; HENRY, 1989: 158).
5. SIMMONS, 1977: 122.
Table 2 : Non-geometric microliths.

<table>
<thead>
<tr>
<th></th>
<th>medial fragment</th>
<th>reouched and backed bladelet</th>
<th>reouched on both edges</th>
<th>point</th>
<th>alternately reouched bladelet</th>
<th>invertedly reouched bladelet</th>
<th>oblique backed bladelet</th>
<th>truncated bladelet</th>
<th>standard bladelet</th>
<th>variety</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area E</td>
<td>320</td>
<td>20</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>7</td>
<td>29</td>
<td>413</td>
</tr>
<tr>
<td>%</td>
<td>77,5</td>
<td>4,8</td>
<td>2,2</td>
<td>1,7</td>
<td>1,2</td>
<td>1,0</td>
<td>0,2</td>
<td>2,7</td>
<td>1,7</td>
<td>7,0</td>
<td>100</td>
</tr>
<tr>
<td>Area F</td>
<td>76</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>69,1</td>
<td>7,3</td>
<td>0,9</td>
<td>4,5</td>
<td>1,8</td>
<td>2,7</td>
<td>0,9</td>
<td>2,7</td>
<td>9,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area B, general</td>
<td>58</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>62,4</td>
<td>6,5</td>
<td>2,2</td>
<td>4,3</td>
<td>3,2</td>
<td>1,1</td>
<td>7,5</td>
<td>3,2</td>
<td>9,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clay layer (in Area B)</td>
<td>81</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>68,1</td>
<td>5,9</td>
<td>5,0</td>
<td>1,7</td>
<td>9,2</td>
<td>0,8</td>
<td>2,5</td>
<td>6,7</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>535</td>
<td>41</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>8</td>
<td>20</td>
<td>16</td>
<td>56</td>
<td>735</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>72,8</td>
<td>5,6</td>
<td>2,4</td>
<td>2,4</td>
<td>2,9</td>
<td>1,1</td>
<td>0,3</td>
<td>2,7</td>
<td>2,2</td>
<td>7,6</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3 : Geometric microliths.

<table>
<thead>
<tr>
<th></th>
<th>proto rectangle</th>
<th>rectangle</th>
<th>trapeze</th>
<th>asymmetric trapeze A</th>
<th>asymmetric trapeze B</th>
<th>parallelogram</th>
<th>lunate</th>
<th>truncated backed bladelet with an oblique truncation</th>
<th>broken backed bladelet with a straight truncation</th>
<th>broken backed bladelet with an acute truncation</th>
<th>broken backed bladelet with a broken backed bladelet</th>
<th>broken backed bladelet with a broken backed bladelet</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area E</td>
<td>1</td>
<td>28</td>
<td>40</td>
<td>102</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>283</td>
<td>217</td>
<td>13</td>
<td>1695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>0,1</td>
<td>4,0</td>
<td>5,8</td>
<td>14,7</td>
<td>0,4</td>
<td>0,7</td>
<td>0,4</td>
<td>40,7</td>
<td>31,2</td>
<td>1,9</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area F</td>
<td>5291</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>40,6</td>
<td>36,8</td>
<td>2,8</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>4,7</td>
<td>1,9</td>
<td>8,5</td>
<td>3,8</td>
<td>3,8</td>
<td>20,1</td>
<td>2,8</td>
<td>36,8</td>
<td>6,7</td>
<td>6,7</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area B, general</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>34</td>
<td>6,7</td>
<td>33,0</td>
<td>6,4</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>4,5</td>
<td>5,6</td>
<td>6,7</td>
<td>2,2</td>
<td>2,2</td>
<td>33,7</td>
<td>38,2</td>
<td>6,7</td>
<td>33,0</td>
<td>6,4</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clay layer (in Area B)</td>
<td>41</td>
<td>49</td>
<td>54</td>
<td>46</td>
<td>46</td>
<td>45,0</td>
<td>33,0</td>
<td>6,4</td>
<td>999</td>
<td>29</td>
<td>999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>3,7</td>
<td>0,9</td>
<td>5,5</td>
<td>4,6</td>
<td>4,6</td>
<td>45,0</td>
<td>33,0</td>
<td>6,4</td>
<td>999</td>
<td>29</td>
<td>999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>41</td>
<td>123</td>
<td>5</td>
<td>7</td>
<td>14</td>
<td>405</td>
<td>326</td>
<td>29</td>
<td>999</td>
<td>999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>0,1</td>
<td>4,1</td>
<td>12,3</td>
<td>0,5</td>
<td>0,7</td>
<td>1,4</td>
<td>40,5</td>
<td>32,6</td>
<td>2,9</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GEOMETRIC MICROLITHS

The geometric microliths are mainly rectangles (3,7 % - 4,7 %; fig. 3:3-9), trapezes (0,9 % - 5,8 %; fig. 3:11-16), asymmetric trapezes-A (5,5 % - 14,7 %; fig. 3:10, 17-27) and parallelograms (0 % - 2,2 %; fig. 3:28-31). In this paper we chose to use specific definitions for the geometrics, and not the general “trapeze/rectangle” category. We defined rectangles only when both ends were perfectly truncated at 90°. The few exceptions are cases in which one of the ends was truncated at an acute angle of about 70-80° (referring to the angle between the back and the truncation), while the other was at 90°. As for trapezes we cataloged only items with obliquely symmetrical truncations. In the parallelograms we cataloged backed microliths that have parallel oblique truncations at both ends. The back and truncations of geometric microliths are mostly abruptly retouched, with some cases of bi-polar...
Fig. 3: Geometric microliths from Ain Miri: 1-2: varia microliths; 3-9: rectangles; 11-16: trapezes; 10, 17-27: asymmetric trapezes A; 28-31: parallelograms; 32-37: lunates.
Broken-backed bladelets with an oblique truncation:

A total of 405 items was found, constituting 33.7%-45% of the geometric microliths. We assume that most of these are broken trapezes and asymmetric trapezes-A since only two complete obliquely truncated backed bladelets were found. A few of these broken pieces could also be parts of parallelograms.

Broken-backed bladelets with a straight truncation:

A total of 326 items was found, constituting 31.2%-38.2% of the geometric microliths. These items are easily identified as broken geometric microliths, and can be fragments of rectangles, proto-rectangles or asymmetric trapezes-A.

Broken-backed bladelets with an acute truncation:

A total of 29 items was found, constituting 1.9%-6.7% of the geometric microliths. These broken-backed bladelets are truncated at an acute angle, mostly ca 70-80°. Most of these are fragments of parallelograms.

The fact that broken-backed bladelets with oblique truncations are the largest group in the “broken geometric microliths” is not surprising, since all the geometric microliths,
except for rectangles, have at least one end with an oblique truncation.

METRIC ATTRIBUTES OF THE GEOMETRIC MICROLITHS

The assemblage from Ain Miri includes a large sample of complete geometric microliths, enabling a thorough analysis. We concentrate on Area E that provided a large sample from a specific stratigraphic context. We start by analyzing complete geometric microliths of all types (without the lunates and proto-rectangles). The distribution of length in figure 4 shows a clear division between the relatively shorter rectangles, and the longer trapezes and asymmetric trapezes-A. The mean length of trapezes is 22.5 mm (s.d. 6.1), asymmetric trapezes-A 19.3 mm (s.d. 6.1), and rectangles 14.6 mm (s.d. 2.9). That of parallelograms is 19.2 mm (s.d. 5.9); however the sample of parallelograms is small (N = 5). A significant difference was found between the trapezes and rectangles (22.52±6.11 vs 14.61±2.94, P < 0.05)\(^\text{12}\).

The width of geometric microliths (fig. 5) also shows a clear pattern: trapezes are relatively narrow (most of them about 6-7 mm in width), and rectangles similarly are also quite narrow. Asymmetric trapezes-A tend to be a little wider (mostly about 7-9 mm in width). The parallelograms are the widest (most of them 8-9 mm). Mean width shows a similar pattern: for trapezes: 7 mm (s.d. 1.3), for rectangles 7.4 mm (s.d. 1.1), for asymmetric trapezes-A 8.2 mm (s.d. 1.4), and for parallelograms 8.8 mm (s.d. 0.8). A significant difference was found between the asymmetric trapezes-A and rectangles (8.23±1.37 vs 7.39±1.07, P < 0.05).

Thus, while length shows a clear division between rectangles and trapezes, the two geometric categories are very similar in width. A clear division is indicated between rectangles and asymmetric trapezes-A that tend to be wider. This emphasizes the problem involved in combining these geometric microliths into one general “trapeze/rectangle” category.

In search of chronological trends we looked at all the complete geometric microliths of the southern 2 m\(^2\) of area E by stratigraphic unit. The top unit (A) represents the uppermost layer (N = 26), and the lower unit (B-C) represents the lower layers (B + B1 + C) (N = 91). The length of all geometric microliths (as one group) shows that those from the upper unit are a little shorter than those from the lower unit (fig. 6). The peak of those from unit A is about 11-15 mm, while the peak of those from unit B-C is about 16-20 mm. A clear pattern was observed in the width (fig. 7) – those from the upper unit tend to be wider than those from the lower unit. The peak of unit A is about 9 mm, while the peak of unit B-C is about 7 mm. Nevertheless, it should be noted that the described differences were not found to be statistically significant.

Looking for diachronic trends in a single microlith type was only possible for the asymmetric trapezes-A, of which there is a relatively large sample (13 from unit A and 52 from unit B-C). The asymmetric trapezes-A length distribution shows that those from the upper unit tend to be shorter than those from the lower unit (fig. 8). The peaks are the same as in the previous analysis; however the trends here are clearer. As for width, those from the upper unit tend to be wider than those from the lower unit (fig. 9). The peak of unit A is around 9 mm, while that of unit B-C is around 7-8 mm. These differences were not statistically significant. The fact that the metric attributes of the asymmetric trapezes-A are somewhat different than the attributes of the geometric microliths as a whole (fig. 6-7), implies that different patterns of change characterized the various microlith types. This point further emphasizes the importance of not uniting the geometric microliths into a single category of trapeze/rectangles.

PROJECTILE FRACTURE ON MICROLITHS FROM AIN MIRI

During the analysis we noticed projectile fractures in some of the microliths (N = 76). Similar fractures are known from experimental work and from archaeological material\(^\text{13}\). A unique case of a Helwan lunate embedded in a vertebra of a Natufian male was recently reported\(^\text{14}\). We only refer to macro-fractures visible to the naked eye\(^\text{15}\). Projectile fractures were separated into six types following a study of the assemblage of the Kebaran site of Nahal Hadera\(^\text{16}\):

- **Fluted fracture**: This fracture is characterized by the reduction of a small chip, mostly from the ventral face\(^\text{17}\). The items also fit some of the “step-terminating bending fracture-
sand the small spin-off scars described by Fischer18 (fig. 10:1).

Burin-like fracture: This fracture is characterized by the appearance of a burin-like scar on the lateral edge of the bladelet originating from the tip. This breakage is usually the result of a direct hit on a hard object19 (fig. 10:2).

Burin on a break: This fracture is characterized by a burin-like scar originating from a bending fracture. This fracture is assumed to be the result of the collision of flint pieces during the hit (fig. 10:3-4).

Side fracture: This fracture is a burin-like scar originating from one of the lateral edges at a straight or oblique angle. It should be noted that these are not scars resulting from the use of the microburin technique. The fact that many of these fracture scars appear on a shaped end and are overlying the retouch (fig. 10:5-7) clearly emphasizes the difference from the microburin technique.

Multi-fractures: This type is characterized by the appearance of more than one projectile fracture at one end of the bladelet (fig. 10:8-13).

18 FISCHER, 1990 : 31.
19 BERGMAN and NEWCOMER, 1983 : 241.
Double fracture: This type is characterized by the appearance of projectile fractures at both ends of the microlith. Some of these also bear a multi-fracture pattern at one end.

The distribution of the different fracture types in the various microlith categories (table 4) may help in reconstructing hafting patterns. One of the interesting results of this analysis is the difference between broken-backed bladelets with an oblique truncation and broken-backed bladelets with a straight truncation. In the former, which may represent broken trapezes, the frequency of double fractures is higher than in the latter, which may represent rectangles (28.6% and 14.3% respectively)20. In contrast, the frequency of side fractures is higher in the latter.

20 See our comment on "broken geometric microliths" in the section "geometric microliths" where we suggest refraining from using "broken trapeze" or "broken rectangle".

Fig. 10: Projectile damage on microliths from Ain Miri.
(40 %, as opposed to 20 % in the broken-backed bladelet with an oblique truncation). It is assumed that double fractures are characteristic of a direct hit on a solid object, and probably represent microliths that were hafted at the point. Side fractures, on the other hand, represent a fracture originating from the side (maybe while penetrating the tissue). This may indicate that trapezes (as represented by the broken-backed bladelets with an oblique truncation) were more often hafted at the point, while rectangles (as represented by the broken-backed bladelets with a straight truncation) were mostly hafted at the lateral edge of the composite tool.

This pattern is in good accordance with the archaeological data and experimental results. Some hafted microliths from the European Mesolithic show the use of one microlith at the end of the shaft while a second one is hafted at the side21. The remains of adhesive material on some microliths from desert sites in Israel show that many microliths were hafted along the shaft22. In the Kebaran site of Nahal Hadera V a few microliths were found bearing hafting residue, indicating that microliths were hafted both along the shaft and at the tip23. Experimental studies show that microliths hafted at the side of the shaft are important in achieving a neater cutting of the tissues, and reducing the friction of the shaft during penetration24.

Studying microliths as projectiles may improve our understanding of the changes in technology and typology of microliths during the Epipaleolithic period. Many of the microliths from the Early Epipaleolithic are curved and some are twisted25. In contrast, almost all the geometric microliths from Ain Miri are straight. A large portion of straight geometric microliths also appears in other Geometric Kebaran

23. Gersht et al., n.d.
sites. This is highly advantageous for projectiles, since the purpose is to pierce the hide and to cause maximum bleeding during penetration. The piercing of the hide involves great pressures on the projectile that might cause breakage if it is too fragile. A curved microlith is less likely to withstand these pressures. Furthermore, in order to cause maximum bleeding, a penetration of 15 to 20 cm is needed, thus requiring the least friction possible. In situations where the projectile breaks during the piercing of the hide, there will be more friction. In addition, curved or twisted bladelets, even if not broken, will also increase friction. The straight microliths of the Middle Epipaleolithic seem to be more effective in reducing friction, and thus have a potential for better penetration, causing greater bleeding. We see this aspect as an important development in geometric microliths.

Another difference between the Early Epipaleolithic and the Middle Epipaleolithic concerns the technology used to produce microliths. It was noticed that while in the Early Epipaleolithic cores were meticulously shaped, those of the Middle Epipaleolithic were only roughly shaped. As a result, blanks produced in the Middle Epipaleolithic were less standardized, and more pronounced secondary modification was required in order to achieve the desired end product. This “new” concept of knapping facilitated the production of straight geometric microliths by removing/snapping the curved ends.

CONCLUSIONS

The analysis of the microliths from Ain Miri raises some new questions regarding the Geometric Kebaran complex. Before evaluating the contribution of Ain Miri we briefly review the current state of Geometric Kebaran research on relevant issues. Two main groups in the Geometric Kebaran were characterized by the width and the frequency of trapezes/rectangles. Some assemblages consist of very narrow geometric microliths like Haon III and Hayonim Terrace, while other assemblages consist of wide geometric microliths, such as Nahal Lavan VI and Kiryath Aryeh. Goring-Morris, basing his arguments on sites from southern Israel and Sinai, argued that one group is characterized by a mean width of over 7.5 mm and by a mean length of over 20 mm, while the second group is characterized by smaller mean measurements. Henry, on the other hand, who focused on a different sample of sites, chose to separate the assemblages differently. The first group is characterized by a mean width of 10-11 mm, and the second group by a mean width of 13 mm. The differences between the two groups are assumed to reflect chronological and regional aspects. The geometric microliths tend to become wider over time, and in general, wide geometric microliths are characteristic of the south and the desert area.

The only stratigraphic evidence for a diachronic trend is from el-Khiam, where Bar-Yosef claims that the microliths are wider in the upper layer. However, we are familiar with the problematic nature of the El-Khiam assemblages. Fellner claims that there is no stratigraphic evidence for a clear chronological subdivision within the Geometric Kebaran, and he suggests that the differences that do occur are due to some interaction with the Mushabian entity in the south. In his opinion, “The Geometric Kebaran of Northern and Central Palestine [our emphasis] remained typologically unchanged until the emergence of the Natufian…”

This is where the contribution of the assemblage from Ain Miri lies. Until now, only three excavated Geometric Kebaran sites from central and northern Israel provided detailed lithic descriptions: Hefziba, Haon III and Hayonim Terrace. Another site is Wadi Ziqlab from Northern Jordan. The first three sites have very narrow microliths. In Hefziba the mean width of the geometric microliths is a little less than 5 mm, in Haon III the mean width is around 4-6 mm, and in Hayonim Terrace the mean width is 5.3 mm. The mean...
The geometric kebaran microlithic assemblage of Ain Miri, Northern Israel

The width of the geometric microliths from Ain Miri is higher than the mean width in the above-mentioned three sites, and falls between the two groups of the Geometric Kebaran suggested by Goring-Morris\(^46\). The average width for all the Geometric microliths at Ain Miri is 7.8 mm. The mean length of the geometric microliths is 19.3 mm, and again seems to fall between the two groups (the mean length of Hefziba is 16.1-17.7 mm\(^47\) and of Hayonim Terrace is 15.6 mm\(^48\) – very different from Ain Miri). Wadi Ziqlab 148\(^49\) is different from these three assemblages with narrow microliths, and greatly resembles that of Ain Miri. In Wadi Ziqlab 148 the mean width is 7.6 mm and the mean length is 20.9 mm\(^50\). The similarity of Wadi Ziqlab 148 to Ain Miri might indicate that we are dealing with another facies of the Geometric Kebaran of northern Israel and Jordan.

The Ain Miri assemblage is different from most other known Geometric Kebaran assemblages in the northern region of Israel and Jordan. The difference may be of a chronological nature. In spite of the variability observed at Ain Miri, it is not an assemblage that resembles the sites of Haon III or Hayonim Terrace. If at all, Ain Miri seems to represent a site later than the northern sites mentioned.

This chronological difference, if verified, is expected to have an expression in the composition of the microlith assemblage as well. Fellner, for example, emphasized that the difference in width of microliths is accompanied by a difference in the trapeze/rectangle ratio, whereby trapezes are more common in assemblages characterized by narrow microliths\(^51\). The assemblage from Ain Miri does not accord with this suggestion, being dominated by asymmetric trapezes-A.

The presence of projectile fractures in a large number of the microliths was also discussed, and we suggest that it is an integral part of the assemblage that must be treated in order to better understand some of the lithic changes during the Epipaleolithic period. The fact that geometric microliths are straighter than in the Early Epipaleolithic seems to be significant for hunting tools.

ACKNOWLEDGMENTS

The Ain Miri Excavation Project is supported by the Irene Levy Sala CARE Archaeological Foundation. We would like to thank Rodika Pinhas for drawing the flint items, and Uri Dokhovney for the other graphics. We are also indebted to Lisa Maher who shared with us some of the results of her current research in Wadi Ziqlab.

RON SHIMELMITZ, RAN BARKAI and AVI GOPHER

Institute of Archaeology
Tel-Aviv University
Ramat Aviv 69978
Israel
agopher@post.tau.ac.il
barkaran@post.tau.ac.il
shimelmo@post.tau.ac.il

BIBLIOGRAPHY

BAR-YOSEF O.

BAR-YOSEF O. and GORING-MORRIS N.

BAR-YOSEF O. and VOGEL J.

BERGMAN C.A. and NEWCOMER M.H.

BERGMAN C.A., MCEVAEN E. and MILLER R

BOCQUENTIN F. and BAR-YOSEF O.

COUCH J.S., STROPES T.A. and SCHROTH A.B.

49. MAHER et al., 2001.
51. FELLNER, 1995 : 46-47.